精品91麻豆免费免费国产在线_男女福利视频_国产一区二区三区小向美奈子_在教室里和同桌做校园h文

5.8彎曲變形

知識點一:撓曲線的微分方程(一般知識點)

在外載(橫向外力或力偶)作用下,梁的軸線由直線變為曲線,彎曲后的軸線稱梁的撓曲線

在對稱彎曲條件下,撓曲線是一條連續、光滑的平面曲線

彎曲變形時,梁軸線上的每一點即存在沿y方向的位移,也存在沿x方向的位移(由于軸線處在中性層,軸線不可伸長)

在小變形的假定下,軸線上的每一點沿x軸方向的位移很小,可以忽略不計,而只考慮沿y方向的位移

軸線上的每一點沿y軸方向的位移稱為梁的撓度,即橫截面形心在垂直于軸線方向的位移稱為梁的撓度。

一般用y = w(x)表示,并且以向上為正

橫截面相對于其原位置所轉過的角度稱為梁的截面轉角。一般用(x)表示截面轉角,并且以逆時針為正

忽略橫截面的剪切變形,變形后的橫截面仍保持平面,并且與撓曲線垂直(平截面假設)。則轉角等于撓曲線在該點的切線與x軸的夾角¢

剛度條件:

撓度 w 和轉角是梁彎曲變形的兩個基本量

繞曲線的微分方程:

根據小變形假設:

由于繞曲線極其平坦,|w´|=|| <<1,可近似地認為

梁撓曲線的近似微分方程 

      

等截面直梁撓曲線微分方程的幾種形式

1、  已知梁橫截面上的彎矩m(x)

2、  已知梁橫截面上的剪力fs(x)

3、  已知梁上的橫向載荷q(x)

知識點二:用積分法求彎曲變形(掌握)

邊界條件:

1、  在固定端,撓度和轉角都等于0

2、  在鉸支座上,撓度等于0

3、  在彎曲變形的對稱點上,轉角等于0

連續性條件:

在撓曲線的任意點上,有唯一確定的撓度和轉角。

例:

邊界條件:

連續條件:

 

最大撓度:當,即=0時,w為極值

最大轉角:,即m=0時,為極值

知識點三: 用疊加法求彎曲變形(了解)

彎矩,剪力和載荷集度均與撓度無關,僅為坐標 x 的函數

撓曲線方程為線性微分方程,同時,通常邊界條件關于撓度也是線性的。因此,從數學上看為線性微分方程邊值(初值)問題,疊加原理成立

疊加原理:在若干載荷作用下,梁上任一截面的撓度、轉角等于各個載荷單獨作用下該截面的撓度、轉角之和

剪力由支座承受,不會引起梁的彎曲

例:圖示的等截面外伸梁,ab段的抗彎剛度為ei1 bc段的抗彎剛度為ei2,在bc段有均布載荷q的作用,求截面c的轉角和撓度

對問題 i,由于梁ab段內的剪力和彎矩為零,所以,ab段不發生變形

bc段相當于懸臂梁,故問題 i 可等價于問題 i´  

利用懸臂梁的結論,可得梁截面c處的撓度w1c和轉角q1c分別為

對問題ii ,剪力 qa 由支座 b承受,不會引起梁的彎曲,僅有彎矩 qa2/2 的作用

由于梁bc不受力,僅考慮簡支梁ab的彎曲變形,梁截面b處的轉角為qb

利用連續條件,梁 bc 為直線,梁截面c處的撓度w2c和轉角q2c分別為

(注意疊加法求撓度時,這段連接處轉角乘上長度便知端面撓度,但要取反值:畫圖便知

因此,原問題截面c處的總撓度和轉角分別為

知識點四:簡單超靜定梁(了解)

例:如圖所示的梁ab,其抗彎剛度為ei,試求梁的支座反力

解除固定端 ab兩處的所有約束。此問題共有六個未知的約束反力。三次超靜定問題

利用對稱性,可知

利用對稱性,問題簡化為一次超靜定,未知量為彎矩 ma ( = mb )

利用對稱性,可考慮原問題的一半,由對稱性知,梁中間截面 e 只存在彎矩 me

由梁的基本變形結論知,在載荷 f 單獨作用下,截面 e 處的轉角為

在彎矩 me單獨作用下,截面e處的轉角為

根據疊加原理,梁截面 e 處的轉角為(變形協調條件)

固定端 a 處的支反力偶為

利用反對稱性,求解如下梁的彎曲變形問題